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SUMMARY 
 
Fragmentation is a fundamental process that naturally spans the micro to macroscopic scales. Recent advances in 
algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes 
in a real simulation through a heterogeneous multiscale mathematical model. Arbitrary Lagrangian Eulerian 
(ALE) methods are combined with automatic mesh refinement (AMR) in the ALE-AMR code that is the 
software foundation of the current research. In this talk, we focus on the hierarchical material model (HMM) 
used to span the material response from the microscale, where fracture and fragmentation are initiated, to the 
macroscale of the target system. This model is used to predict the response of the target assemblies in the 
high-powered laser target chambers so that they can be designed to protect the optics and instrumentation from 
damage. Unlike most physics analyses, which model only the target, the present analyses must include the target 
shields and pinhole camera arrays, often the source of most of the fragments. 
 
 
1. INTRODUCTION 
Inertial confined fusion (ICF) is one of the most 
promising approaches to the development of fusion 
power. Conceptually, it is relatively simple: a large 
number of laser beams strike a target (either directly 
or indirectly by the production of x-rays), generate a 
series of strong shockwaves within it that compresses 
the target to the point where fusion can occur, and the 
target’s own mass confines it long enough that the 
energy released by fusion exceeds the energy 
required by the laser beams. Like many simple ideas, 
it is very difficult to implement. Large ICF research 
facilities include the National Ignition Facility (NIF) 
at Lawrence Livermore National Laboratory and the 
Laser MegaJoule (LMJ) facility being built by 
Commissariat à l’énergie atomique or CEA, the 

French Atomic Energy Commission. In Japan, the 
GEKKO XII-HIPER (High Intensity Plasma 
Experimental Research) System is devoted to 
studying targets in a flexible configuration. 
 The ICF target is held in the chamber by a support 
structure and is surrounded by instrumentation. While 
the lasers completely vaporize the main hohlraum for 
the case of an indirect-drive target, some of the 
surrounding diagnostics and other pieces attached to 
the hohlraum may fragment, sending debris into the 
instrumentation and laser optics. If the debris is large 
enough and has enough velocity, the resulting 
damage may be very expensive in terms of both time 
and money. Accurately predicting if and how a 
structure may fragment is therefore a critical part of 
the design of new experiments. 



 
2. HIGH-POWER LASER FACILITY 
REQUIREMENTS 
 
The environment of a high-powered laser chamber 
contains a good deal of open space from the vacuum 
that surrounds the small fusion target located at the 
chamber center. One goal of our simulations is to 
model how the target dismantles after being hit by 
either laser beams or by x-rays that result from the 
lasers interacting with other target components. For 
the purposes of our simulation the “target” includes 
not only the hohlraum (indirect drive) where the laser 
is focused, but also ancillary target elements such as 
cooling rings, shields, or appendages that improve 
diagnostic capabilities. Pieces of the target that are 
closest to target center where the laser is focused will 
be vaporized and thus are relatively benign. However 
target components that are further from the main laser 
focus point are subject to lower levels of energy and 
therefore may be fragmented. It is important to 
determine the size of these fragmented pieces and 
their velocity vectors after the laser shot so that optics 
and diagnostics that line the chamber will be 
protected from damage. Dedicated experiments as 
well as experience from recent high-powered laser 
shots provide information on this environment and 
the usefulness of mitigation procedures to direct 
fragments in benign directions [Eder, 2008]. 
 
3. ALE METHODS 
Solids, liquids, gases, and plasmas must be accurately 
handled in the simulation. Solid materials are 
typically modeled using a Lagrangian approach, 
where the computational mesh deforms with the 
material. This approach provides the most accurate 
strain calculations, which are critical for modeling the 
response of the material, and material interfaces are 
exactly resolved. If the deformation of the 
computational mesh is too large, however, the 
accuracy is degraded and a Lagrangian calculation 
may go unstable.  
 Liquids, gases, and plasmas typically undergo 
very large deformations, and therefore they are 
simulated using an Eulerian formulation, where the 
mesh is fixed in space and the material flows through 
the mesh. An Eulerian formulation is typically more 
expensive than a Lagrangian formulation because of 
the transport terms. 
 Arbitrary Lagrangian Eulerian (ALE) methods 
allow the mesh to move relative to the material with 
an arbitrary velocity. If the mesh velocity is the same 
as the material velocity, the Lagrangian formulation 
is recovered, and if the mesh velocity is zero, the 
Eulerian formulation is recovered. ALE methods 
locally control the mesh velocity to maximize the 
accuracy and stability of the solution. 
 There are two types of ALE formulations: 1) 

simplified ALE methods, and 2) multi-material ALE 
methods. Simplified ALE (SALE) methods permit 
only a single material within a finite element, which 
simplifies the formulation, but restricts the 
boundaries to be Lagrangian. The restriction on the 
boundaries limits their usefulness. Multi-material 
ALE (MMALE) methods allow a single element to 
contain several materials. This generality allows 
material boundaries to run through the elements, 
greatly increasing the robustness of the calculation, 
and allows for the dynamic creation of new free 
surfaces through failure, a capability that is necessary 
for modeling fragmentation accurately. 
 
3.1 Global Computational Strategy 
ALE methods are implemented, via operator splitting, 
as a sequence of three steps.  
 The first step is the Lagrangian step, and it 
incrementally updates the material motion for all 
phases (from solid through plasma) using the central 
difference method for time integration. 
 The second step adjusts the motion of the mesh to 
achieve the best accuracy and stability for the 
solution. There is no unique methodology for 
performing this step, and most codes have a range of 
strategies that the user may try [Benson, 1992]. 
 The last step is the Eulerian, or remap, step. It 
projects the solution from the original mesh in the 
first step to the updated mesh of the second step. In 
most MMALE calculations, it is the most expensive 
part of the analysis. The solution variables within an 
element (stress, density, energy, etc) are regarded as 
piecewise constant during the Lagrangian step. 
Projecting the piecewise constant solution results in 
the first order accurate donor cell advection method, 
which is not adequate for large-scale calculations. 
Modern projection methods, such as MUSCL and 
WENO, reconstruct higher order polynomial 
approximations of the solution from the piecewise 
constant Lagrangian solution, and project them on to 
the new mesh, yielding second order accurate or 
better solutions.  
 
3.2 Multi-material Complications 
Multi-material formulations have two complications 
not faced by formulations for a single material. When 
an element contains more than one material, the 
contents of an element are described by the volume 
fractions of its constituent materials, where the 
volume fraction is simply the ratio of the volume of a 
particular material and the element volume.  
 During the Lagrangian step, the incremental 
deformation of the element must be partitioned 
between the materials contained by the element. For 
example, consider an element containing steel and air. 
If the element is compressed in the direction normal 
to the interface between the steel and the air, we 
expect that the compression will be taken up entirely 



by the air and the increase in the pressure will be 
small. On the other hand, if the element is 
compressed in a direction parallel to the interface, we 
expect that the deformation will be shared between 
the air and the steel, and the pressure will increase 
approximately by the bulk modulus of the steel times 
its volume fraction of the element times the overall 
element volume change. The behavior of an element 
therefore clearly depends on how the materials are 
distributed within the element and how the element is 
deformed. The algorithm that calculates this behavior 
is called the mixture theory. 
 The locations of the material interfaces are 
required during both the Lagrangian and Eulerian 
steps. Several strategies for tracking or reconstructing 
material interfaces have been tried over the years for 
MMALE methods. The one used here, a volume of 
fluid (VOF) method, has the advantage that the 
material interfaces are reconstructed every time step 
so that new free surfaces evolve automatically and 
naturally as materials fracture, a quality that is critical 
to modeling fragmentation. These methods cannot be 
described here due to space limitations, and the 
interested reader is referred to [Benson, 2002]. 
   
4. AUTOMATIC MESH REFINEMENT 
The computational mesh governs the accuracy and 
cost of the analysis: The solution error is proportional 
to the square of the element size, while the size of the 
stable time step is inversely proportional to the 
smallest element in the calculation, and the cost per 
time step is proportional to the total number of 
elements. For example, to uniformly reduce the error 
in the solution by a factor of 4, the number of 
elements must be increased by a factor of 2 in each 
direction, and the time step size reset to ½ it previous 
value, increasing the total cost of the analysis by a 
factor of 23/(1/2)=16.  
 The computational mesh must therefore be 
controlled so that the total number of elements is 
minimized while guaranteeing that adequate mesh 
resolution is maintained in the interesting parts of the 
solution. With the strong shocks traveling across the 
solution domain and dynamically evolving material 
interfaces due to material failure, the interesting parts 
of the solution change their position with time, and it 
isn’t possible to use a single fixed mesh that is both 
efficient and accurate for the entire duration of the 
analysis. Automatic (or Adaptive) Mesh Refinement 
(AMR) automatically refines the mesh where the 
solution is becoming interesting, and coarsens it 
where nothing is happening, to maximize the 
accuracy of the solution while minimizing its cost.  
 AMR algorithms are too complicated to describe 
in detail due to space limitations. Their structure, 
however, can be summarized. First, the regions that 
require mesh refinement or coarsening are identified 
by an error indicator, which assigns a value to each 

element bases on its estimated accuracy in the future. 
This estimate is often based on estimates of the 
current accuracy, but it may also anticipate future 
needs by detecting changes to the solution (e.g., the 
chemical reaction rate has suddenly increased) that 
indicate the current mesh will soon be inadequate. 
Second, a new mesh is created from the old mesh that 
is appropriately refined or coarsened based on the 
error indicator. Last, the solution from the old mesh 
is projected on to the new mesh. The algorithms for 
performing the last step are similar to the ones used 
during the Eulerian step.    
 
5. ALE-AMR 

The ALE-AMR code is a new code whose 
primary purpose has been to model the process by 
which high-powered laser targets and ancillary 
structures such as metal shields/pinholes spall and 
fragment when exposed either to laser light or x-rays. 
It is currently the primary design tool for assessment 
of potential damage to optics and diagnostics on the 
National Ignition Facility (NIF), a high-powered laser 
facility at LLNL.  

The code is designed using a unique combination 
of mathematical and engineering techniques that 
allow for insertion of different physics models at 
different levels. The code retains full material 
histories, and other processes such as surface tension 
could be added within the framework. 

The code also incorporates a sophisticated 
interface reconstruction technique that allows us to 
capture the actual sizes and velocities of liquid 
droplets and solid fragments that are expelled from 
targets and other surfaces. Figure 1 shows an 
ALE-AMR simulation of a thin metal foil (red color) 
that is energized by x-rays at the left front face. 
Plasma blows off to the left (the green plume), and 
spall planes form off the rear surface (on the right). 
The top half of the figure shows just the density and 
bottom half shows the moving adaptive mesh with 
four levels of refinement. Small eddies of plasma can 
be seen in the top left. Note how the code can 
calculate spall planes and fragmenting particles as 
well as plasma. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Example simulation using ALE-AMR 
showing mesh motion and adaptive refinement. 

The interface reconstruction scheme in ALE-AMR 
that allows for droplet formation is implemented in 
both two and three dimensions. One example of a 
three dimension problems is given in Figure 2. Here, 
an aluminum cooling ring of an ICF target breaks 
into small droplet sized pieces as it is energetically 
driven from the interior. 

AMR with Arbitrary Lagrangian Eulerian 
Algorithms 
Our modeling strategy is built on ALE-AMR 
algorithms [Anderson, 2004] that are unique in their 
combination of Lagrangian and ALE techniques 
[Benson, 1992] with an AMR framework ([Koniges,  
2006], [Fisher, 2008], [Masters, 2008]). The majority 
of ICF codes are normally based on a standard ALE 
approach. However severe limitations in such 
simulations that use a fixed number of grid points 
restrict the use of physics models at different scales. 
With the ALE-AMR technique, we are able to 
dynamically drive the multiscale adaptivity through 
the use of sets of nested grids that automatically 
coarsen and refine to suit the needs of the simulation. 
The coarsening and refining is based on a hierarchical 
grid structure that changes dynamically in time. The 
software framework supporting this hierarchy is 
SAMRAI [Gunney, 2006] [Wissink, 2003]. Recent 
improvements in the scalability of the underlying 
SAMRAI library show that it scales to 10,000 
processors or more.  

Referring again to Figure 2, we are able to see the 
dynamic adaptive mesh. The bottom half of the figure 
shows the SAMRAI patch boundaries as well as the 
grid contained in those boundaries. In this simulation, 
four levels of refinement were used. The code 
dynamically adds more resolution to areas where it is 
needed, in this case concentrating the mesh and thus 
most of the calculation in the area where spall off the 
back occurs. Note also that the mesh is NOT Eulerian. 
An Eulerian AMR code would have regular Cartesian 
patch boundaries. In contrast, the ALE-AMR code 

includes both the ALE motion and the AMR meshing. 
So in regions where the mesh distorts to 
accommodate the expanding plasma plume, the 
refinement patches also distort. 

The SAMRAI library maintains patches or 
combinations of patches on processors and allows the 
simulation to achieve a high degree of parallelism. In 
the proposed work, at the finest level the material 
models will also be farmed out to processors using 
the SAMRAI framework. Sophisticated load 
balancing techniques allow a highly scalable 
simulation [Koniges, 2008].  

 

 

 

 

 

Figure 2. ALE-AMR 3-D application to dynamics of 
a cooling ring heated from inside. 
 
 
6. HIERARCHICHAL MATERIAL MODEL 

A key objective of the research was the 
development of hierarchical methods for constructing 
coarse-grained models at the scales required by the 
AMR calculation [Fisher, 2008]. Not all aspects of 
the model described here have been implemented, but 
we anticipate that the implementation will be 
completed in the near future. The hierarchical models 
are based on the concept of nested refinement of a 
representative volume element (RVE). An RVE is a 
volume of space containing enough microstructure, 
e.g. grains, to be well approximated by a continuum 
model at a certain scale for an illustration of the 
concept. For convenience, we assume that the RVE is 
a cube. The relevant RVE is generally much larger 
than the finest zones used in the subdomain.  
Assuming that the refinement of a zone consists of 
subdividing it into n zones on each edge, the RVE is 
subdivided into np of the finest zones on an edge, 
where p the number of levels in the model. In the 
figure, there are 3 levels, with each zone at a level 
subdivided into 9 zones at the next level of 
refinement.  

A Voronoi tessellation is currently used to 
construct the grains within the RVE, although the 
method isn’t restricted to using it. The boundaries of 
the grains pass through the zones as indicated in the 
figure. The first level in the hierarchy of the material 
model is therefore the single crystal plasticity model 
of the grain associated with a zone, e.g., the zones 
within the circle labeled 1 in Figure 3. The second 



level is associated with coarsening the finest mesh, 
the zones within circle 2 in Figure 3. The response of 
the aggregates at various scales will, in the future, be 
represented by an innovative interpolation scheme. 
Instead of working with a yield surface in stress 
space, the flow stress is interpolated in the 
deformation rate space and scaled by a viscoplastic 
rate law similar to the one used in single crystal 
plasticity. By using this representation, no 
assumption about the functional form or shape of the 
yield surface is required and the accuracy of the 
representation depends only on the resolution of the 
data used in the interpolation. 

The generation of the HMM continues by 
recursively generating the next level of coarsening 
from the previous level using the same algorithms 
used to generate the polycrystalline models. At each 
level the response is represented by the interpolation 
scheme, and therefore the memory requirement for 
any level of coarsening is fixed. This is contrast to 
faceted representations of the yield surface in stress 
space that increase in complexity as the number of 
grains increases. 
 The RVE tiles the mesh used in the analysis using 
a parametric coordinate system. Some aspects of the 
material response at each level of the hierarchy for 
each subdomain of the RVE will calculated before 
the analysis so that they are a look-up during the 
analysis; others will be calculated on-the-fly as 
described previously by strategies that maximize the 
information obtained from subscale calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Vorni tessellation of a microstructure for 
the HMM. 
 
7. FRAGMENTATION MODELING 
Each material model has failure criteria that govern 
when it will no longer support a tensile load. In 
general, the criteria may be functions of the state 
variables including the temperature, equivalent 
plastic strain, the strain rate, and the stress. Most of 
the calculations we have performed to date have used 
the failure criterion in the Johnson-Cook plasticity 
model.  
 In a typical Lagrangian formulation, when a 

material in an element fails, the entire element fails 
and it is deleted from the calculation. Contact 
algorithms detect the new free surfaces generated by 
the element deletion and prevent their 
interpenetration.  
 Eulerian, and MMALE, formulations construct 
new material interfaces each time step based on the 
volume fractions of the material within an element 
and its neighbors. Since the mesh must cover the 
entire domain through which material may travel, 
elements cannot be selectively deleted since that 
would be equivalent to introducing holes in space. To 
introduce a new interface where material has failed, 
additional material must be introduced to make the 
interface reconstruction algorithm to construct an 
interface through the element. Since the new material 
must not introduce any strength into the element, we 
use a void material, equivalent to a vacuum. When 
the failed material is expanding, enough void material 
is introduced to preserve the density of the failed 
material. When the material fails in compression, a 
very small amount of void material is introduced to 
force the generation of a new free surface.  
 Deciding how to handle a material that fails, 
however, is only one aspect of modeling 
fragmentation. Consider, for example, a 
homogeneous cube that is pulled in tension uniformly 
in all three directions. The resulting stress and 
deformation of the cube are uniform, and therefore 
every point in the cube will fail at exactly the same 
time, reducing it to a gas. Real materials, however, 
don’t behave this way, but fragment into particles 
that fit an exponential size distribution function. The 
fragmentation occurs because real materials aren’t 
perfectly uniform, and some locations start to fail 
before others.  
 In the fragmentation model, the material 
parameters describing when a material fails are 
varied randomly over the mesh, making the material 
nonuniform. Becker has found that this approach 
produces realistic fragmentation that converges with 
mesh refinement. The high frequency component of 
the random field, however, decays as material is 
transported through the mesh, and at late times, the 
material is once again uniform. Benson and Vitali 
have addressed this issue by transporting the initial 
coordinates of the material, and interpolating the 
values of the material parameters from a mesh in the 
initial configuration.  
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